Passa ai contenuti principali

Istituzioni di Matematica II, a.a. 2015-2016

Programma sintetico

  • Serie numeriche: serie geometrica, criteri di convergenza, rappresentazione in serie di funzioni, serie di Fourier.
  • Nozioni di algebra lineare: $\mathbb{R}^2$ e $\mathbb{R}^3$ come spazi vettoriali. Dipendenza lineare e basi. Rette e piani nello spazio. Calcolo matriciale, determinante e inversione delle matrici. Trasformazioni lineari e rappresentazione mediante matrici. Autovalori e autovettori.
  • Calcolo differenziale per funzioni di più variabili: limiti e continuità. Derivate direzionali, derivate parziali e funzioni differenziabili. Derivate di ordine superiore al primo. Massimi e minimi non vincolati. 
  • Curve nello spazio: lunghezza di una curva (regolare), integrali di linea.
  • Integrazione in più variabili: integrali doppi su rettangoli e su domini semplici. Formula di riduzione degli integrali doppi. Integrali tripli su parallelepipedi e su domini semplici. Teorema di Fubini-Tonelli per la riduzione degli integrali tripli. Cambiamento di variabili negli integrali multipli: coordinate polari, sferiche e cilindriche.

Libri di testo

Due libri di testo possono essere utilizzati come riferimento: Calcolo differenziale 2: funzioni di più variabili, di Robert A. Adams e Christopher Essex, edizioni CEA, oppure Analisi Matematica di Michiel Bertsch, Roberta Dal Passo e Lorenzo Giacomelli, McGraw-Hill.

Ulteriori informazioni sulla piattaforma di e-learning http://elearning.unimib.it/

Appelli d'esame

Commenti

Post popolari in questo blog

Il principio di sostituzione degli infinitesimi

Propongo un utile (o almeno spero) riepilogo del cosiddetto principio di sostituzione degli infinitesimi equivalenti. In parole povere, è quel metodo che consiste nel sostituire una funzione infinitesima all'interno di un limite con un'altra espressione che "si comporta nello stesso modo". Esempio 1. È ben noto che \[\lim_{x \to 0} \frac{\sin x}{x}=1, \quad \lim_{x \to 0} \frac{\tan x}{x}=1.\] Supponiamo ora di dover calcolare \[\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}.\] Possiamo osservare che \[\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x \left( \frac{1}{\cos x} -1 \right)}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1-\cos x}{x^2} \frac{1}{\cos x}.\] Utilizzando i limiti notevoli, deduciamo che il limite cercato vale \(1/2\).  Se però avessimo sostituito \(\sin x\) e \(\tan x\) con \(x\), avremmo potuto dedurre che \[\lim_{x \to 0} \frac{\tan x- \sin x}{x^3} = \lim_{x \to 0}\frac{x-x}{x^3}=0.\] Esempio 2. Poiché, per \(x \to +\i...

Commenti all'esame di Matematica del 12 giugno 2019

Rimando alla pagina di e-learning per gli esiti delle correzioni. Nella pagina di questo sito  http://didatticasecchi.blogspot.com/p/matematica-per-biotecnologie-aa-2018.html  sono disponibili i testi e le correzioni dei due esercizi a risposta aperta. Propongo di seguito alcune considerazioni sui principali errori da me riscontrati durante la correzione degli elaborati. Quiz Il corso di matematica si basa essenzialmente sulle proprietà dei numeri reali e sulla definizione di limite. Questi argomenti teorici devono  essere padroneggiati in maniera almeno discreta. In particolare, la definizione di estremo superiore/inferiore deve essere memorizzata (e compresa!) fino al superamento dell'esame di profitto. Lo stesso vale - evidentemente - per la definizione di limite e quelle di continuità e derivabilità. Problemi a risposta aperta È sempre piuttosto sorprendente, almeno per me, che la gran parte dei candidati non  legge il testo dei problemi. Il primo es...

Commenti alla prova di Matematica del 26/2/19

In ottemperanza al nuovo regolamento didattico dell'Università di Milano Bicocca, gli esiti sono pubblicati solo sulla piattaforma e-learning, accessibile previa autenticazione. Commenti Quiz Il cosiddetto tasso di facilità dei tre quiz si è rivelato sostanzialmente uniforme. In altre parole, il tasso di successo è stato simile nei tre diversi quesiti. Questo non è, in realtà, un buon segnale. In effetti, il "solito" quesito sulla definizione di limite doveva essere, in un mondo ideale, molto più facile del quesito sul rapporto logico tra continuità, derivabilità, integrabilità. Invece sono sempre numerosi gli studenti che non sanno distinguere la corretta definizione di limite, nemmeno quando sia scritta. Esercizi a risposta aperta L'esercizio di integrazione ha suscitato reazioni abbastanza curiose. Era un esercizio guidato , nel senso che si articolava in due parti consequenziali. Tra l'altro, il calcolo della primitiva era stato fatto in aula, ed e...