Passa ai contenuti principali

Matematica per Biotecnologie, a.a. 2016/2017

Descrizione del corso

Il corso di matematica per la laurea triennale in biotecnologie ha lo scopo di introdurre lo studente alle principali tecniche del calcolo differenziale ed integrale. Il corso non è une semplice raccolta di metodologie computazioni, bensí una presentazione ragionata dei teoremi fondamentali della disciplina. Alle lezioni "teoriche'' è affiancato un ciclo di esercitazioni, dove lo studente imparerà ad applicare la teoria ad alcuni problemi più concreti.



Prerequisiti

La "cassetta degli attrezzi'' minima per una frequentazione proficua del corso contiene la conoscenza della matematica elementare che tutti apprendono nelle scuole medie superiori: calcolo letterale e numerico, qualche rudimento di geometria euclidea (piano cartesiano, coordinate di un punto, equazione di una retta, ecc.), ma soprattutto la predisposizione ad apprendere idee e metodi nuovi.

Programma del corso

Gli argomenti del corso sono molto classici.

  • Brevi richiami di insiemistica: unione, e intersezione di insiemi. Il prodotto cartesiano di due insiemi.
  • Sistemi numerici: i numeri naturali, razionali e reali. Principali proprietà dei numeri reali: ordinamento, estremo inferiore e superiore, massimi e minimi di un sottoinsieme di R.
  • Funzioni fra insiemi e operazioni sulle funzioni. La funzione composta e la funzione inversa. 
  • Limiti di funzioni e funzioni continue (in un punto e in un intervallo). Alcuni teoremi sui limiti e sulle funzioni continue.
  • Il concetto di derivata per una funzione reale di una variabile reale. Regole del calcolo differenziale. Teoremi fondamentali del calcolo differenziale: Rolle, Cauchy, Lagrange. Cenno al teorema di De l'Hospital.
  • Studio del grafico qualitativo di una funzione: asintoti, monotonia, convessità, punti di flesso.
  • Integrali indefiniti, funzioni primitive, regole di integrazione indefinita.
  • Introduzione all'integrale (definito) secondo Riemann. Classi di funzioni integrabili e teorema fondamentale del calcolo integrale (Torricelli).
  • Integrali impropri e generalizzati.

Esami di profitto

L'esame di profitto per il corso di matematica consiste nello svolgimento di una prova scritta. Lo studente dovrà risolvere alcuni esercizi pertinenti il programma svolto in aula.

Gli studenti che otterranno una valutazione dello scritto pienamente sufficiente, e cioè pari o superiore a 18/30, potranno chiedere di prendere visione dell'elaborato e di confermare il voto. È ovviamente garantita la possibilità di sostenere un'interrogazione orale vera e propria: il voto finale, in questo caso, dipenderà dall'esito della prova orale, e potrebbe essere più alto oppure più basso del voto dello scritto.  

Bibliografia

Il testo di riferimento sarà

S. Secchi, Lezioni di analisi infinitesimale. Liguori, 2013


Suggerimenti bibliografici per le esercitazioni saranno offerti  all'inizio delle lezioni.

Siti web di riferimento

A parte il sito che state leggendo, sarà attivato prima dell'inizio delle lezioni un sito dedicato sulla piattaforma di e-learning dell'ateneo.
Per accedere ai contenuti, occorre inserire l'indirizzo email @campus.unimib.it e la relativa password. Il sito contiene il registro delle lezioni, aggiornato in tempo reale, ed eventuale materiale didattico. È inoltre attivo un forum relazionale dove pubblicherò eventuali avvisi di interesse per gli studenti.


Appelli d'esame


Commenti

Post popolari in questo blog

Esiti dell'esame di matematica del 26 settembre 18

Di seguito la tabella con i risultati:



MatricolaVoto8349114835281137674461583493216834921883495348349349833231683528611835364983311715835650ASS8307081682959912834948238313426836544ASS829979ASS835040108366044830301308240742283563448349054
I risultati saranno verbalizzati giovedì 4 ottobre. Eventuali rinunce del voto ottenuto dovranno pervenire, con nome, cognome e numero di matricola, per posta elettronica entro tale data.

CommentiLo studio di funzione richiedeva di analizzare il valore assoluto di una funzione razionale fratta. Tra gli errori più frequenti, resistono tutti i tipici malintesi sulla definizione stessa di valore assoluto, e sulle sue proprietà fondamentali.  In questo caso era corretto disegnare il grafico della funzione "senza" valore assoluto, ma era altrettanto essenziale ricordarsi di applicare i dovuti accorgimenti per recuperare alla fine la presenza del valore assoluto stesso.Il limite era forse un po' inconsueto, presentando un fattore oscillante e d…

Esiti dell'appello di Matematica del 9 gennaio 2018

Di seguito gli esiti (in trentesimi) dell'esame di Matematica per il CdL in Biotecnologie:



MatricolaVoto8300012283528219834915228313292283491115833002238297333083315322829759238352851983549816767446RIT8353022283492726830955582970429830407248298421283331528833188ASS821128ASS835001168330343083501621829585308229171983047528829601248304801983024830829801188106462682967616832976288337771882399238330602383014010835275168347582383309423822775ASS82957723833049198349232283066117830063228296733083528698301833083062329831122198303522083103617714264RIT822837158349082283070217829810258335471081616421830862288295521683494223818398188162342183490619833196783319016834917ASS83303130831537308307991983326530777076168349451683363124830935238349121983113024833470238307089833084248356952481631415834947883296518834920ASS829518248349071982951628834003297915944834948148308532283436520822810258313393083495223831225298308512681715723752642ASS834925ASS82288518835738198349463082971030833291ASS83122728830506258…

Risultati dell'esame di Matematica del 16 ottobre 2018

Di seguito la tabella dei voti:


MatricolaVoto8349111583528127833007ASS8349321883492124834953ASS8349341083323126822775ASS8349091883528621835633883536416833117128331903075405319835650138307082482959925816518ASS834208ASS83134220836544ASS829979218350402683660410735375ASS835634168329161283490512
I voti saranno verbalizzati martedì 30 ottobre. Eventuali rinunce dovranno essere comunicate per posta elettronica entro lunedì 29 ottobre.

CommentiLo studio di funzione è stato complessivamente soddisfacente. Troppi studenti, tuttavia, hanno trascurato completamente la periodicità della funzione, limitandosi ad un grafico nell'intervallo $(0,\pi)$. La periodicità permette certamente di restringere il dominio di definizione, ma bisogna almeno scriverlo!I due limiti potevano essere risolti facilmente con il calcolo differenziale. Dispiace sempre correggere errori nella derivazione dei polinomi, per tacere della convinzione che $\arccos x = 1/ \cos x$.A parte un paio di studenti che si sono comple…